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REAL OPTION VALUE 

 

 

CHAPTER 5   MULTI-FACTOR AMERICAN     

                          PERPETUAL REAL OPTIONS                                                                

 

In Chapter 4, there is a single underlying state variable, V, which is usually the 

present value of project future cash flows.  In this chapter, either the components of 

V (or the annualized operating cash flows), or both V and K can be stochastic and 

divisible.  Considering the components of V such as net unit profits and volume is 

appropriate if the number of units sold and the net profit per unit are affected by 

different factors. As an example, when demand is inelastic a change in price (and 

consequently in revenue assuming all other factors are constant) will change the 

quantity sold but by a smaller proportionate change than when demand is elastic.  

Correlation between volume and unit profits may vary according to market structure.  

There may be positive correlation between P and Q, if there is both excess demand 

and economies of scale.  

 

5.1.   STOCHASTIC VALUE AND INVESTMENT COST 

 

In the previous section, it is assumed, implicitly, that investment costs (and possibly 

variable costs) are fixed. Now, assume that both the net value and investment costs 

are stochastic and possibly correlated, as in McDonald and Siegel (1986) (M&S), Sick 

(1989), Williams (1991), Quigg (1993), and Mauer and Ott (1999). 

  

M & S were probably the first to provide a two-stochastic-factor real option 

investment model by reducing two dimensions to one.  Assume that both the net 

value and investment costs follow a geometric Brownian motion: 

1V VdV Vdt Vdz           (1) 
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2K KdK Kdt Kdz                                               (2) 

where α is the expected growth or drift of the value and cost, σ the volatility of the 

value and investment cost, and the Wiener processes dz1 and dz2 can be correlated 

denoted by a parameter ρV,K. Viewing the V and K drift in a risk-neutral world implies 

that r-V=δV , the asset or convenience yield, similarly for δK.  

 

Although the asset values and the investment cost follow the same type of stochastic 

process, implying that both variables have associated some sort of uncertainty, the 

uncertainty related to the investment cost will disappear as soon as the investment is 

sunk. Let F (V, K), the real option value (ROV), represent the value of the opportunity 

to invest in a project with stochastic values and investment cost.  The partial 

differential equation (PDE) that explains the movements in the value of the option to 

invest in the project is: 

2 2 2
2 2 2 2

,2 2

1
2 ( )

2

( ) 0

V K V K V K V

K

F F F F
V K VK r V

V K V K V

F
r K rF

K

     



    
    

     


   



                      (3) 

Equation (3) has to be subject to the value matching and the smooth pasting 

conditions, where V̂ and K̂  denote the values that justify immediate investment: 

ˆ ˆ ˆ ˆ( , )F V K V K                                               (4) 

and  1
ˆ

F

V





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
                             (5) 

Using the transformation1 variable, Z=V/K the option to invest can be written as F(V, 

K) =K W(Z) where W(Z) is determined from the ordinary differential equation 

(ODE), where 2 2 2 2V K V K       : 
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Equation (6) should be subject to the transformed boundary conditions: 

0)0( W                                                         (7) 

                                                 
1 Assuming V and K are homogeneous of degree one, so F(tV, tK)=t F(V,K). 
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where  Ẑ  is the threshold.  Subjecting equation (6) to the appropriate boundary 

conditions we obtain: 
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where β1 is given by: 
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Equation (6) is a second order linear ordinary differential equation with constant 

coefficients in the form of:  
" ' 0ay by cy    and (b2-4ac)>0.    

 

With the given yields, volatilities and correlation, the Z (or exchange ratio) volatility 

is 20% and β1=2.00.  The optimal investment trigger is the ratio of V to K, so that if 

K remains at 10, V̂ =20, but if V remains at 10, K̂ =5.  Investment is justified if V 

increases or K decreases, so that ˆ.Z Z  With the given parameter values, the option 

value is entirely due to uncertainty since V=K, there is nil intrinsic option value. 
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Figure 1 

 

     Figure 2 
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                           American Perpetual Exchange Option EQ

INPUT Stochastic V and K

V 100

K 100

V 0.20

k 0.20

V 0.04

k 0.04

 0.50

OUTPUT

F(V,K)=W(Z) 25.00 IF(B17<B16,B4*B13*(B17^B14),B12) 12

V-K 0.00 B3-B4

A 0.25 (B16-1)/(B16^B14) 13

1 2.00 0.5-(B8-B7)/(B15^2)+SQRT(((B8-B7)/(B15^2)-0.5)^2 + (2*B8)/(B15^2)) 11

 0.20 SQRT(B5^2+B6^2-2*B9*B5*B6)

Z* 2.00 (B14/(B14-1)) 10

Z 1.00 B3/B4

ODE 0.00 0.5*(B15^2)*(B17^2)*B20+(B8-B7)*B17*B19-B8*B11 6

W'(Z) 50.00 B4*B13*B14*(B17^(B14-1)) 15

W''(Z) 50.00 B4*B13*B14*(B14-1)*(B17^(B14-2)) 16

W(Z*) 100.00 B13*B4*((B16^B14))

W(Z*) 100.00 (B16-1)*B4 8

W'(Z*) 1.00  9

W(Z) 25.00 B4*(B16-1)*((B17/B16)^B14) 14

ROV and Z* 

as function of V & K Correlation
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In Figure 2 we can see that the ROV and trigger functions are decreasing functions 

of correlation, that is the higher the value and investment cost correlation, the lower 

is the exchange volatility. With low exchange volatility, there is little real option 

value, but also less downside risk, so investment is justified at lower ratios of V/K.  

Where volatility is nearly nil, the net present value rule is justified, that is invest if 

V>K, or V/K >1.  Note that the “gamma” coefficients of (6) are 

2 2 2 2

,( ) .5* , ( ) .5* , ( )V K V K V KA V B K C VK       , since 2 4B AC is negative, 

this is an elliptical PDE. 

 

Merton (1973) suggests that for a stochastic stock price S, and a constant or 

deterministic exercise price E, the PDE governing the option price over time might 

be reduced to an ODE by defining the variable x=S/E, so that the option value 

function is homogeneous of degree one in {S, E}.  

 

M & S set the disclosure standard of numerical results for different sets of the 

parameter values, noting that the threshold Ẑ  and ROV are positive functions of V 

drift, V and K volatility and negative functions of correlation, and K drift.  M & S 

make two additional comments:  that in the sensitivity analysis, it is assumed that 

any changes in volatilities do not affect the required rates of return or drifts; and 

that, of course, strictly speaking, it is not reasonable to suppose that project values 

(or IBM stock) follow geometric Brownian motion, since there would have to be a 

chance that “IBM would become indefinitely large relative to the economy as a 

whole”. Incidentally, M & S note that swapping one risky asset for another can also 

be regarded as an asset replacement problem, and also a model for the optimal 

scrapping of a project (see Adkins and Paxson, 2017 EJF). 

 

When the option value is homogenous of degree 1 in V and K, with Z=V/K, 

so that W(Z)=F(V,K)/K, Sick (1989) shows that the explicit derivatives when 



 

   

60 

substituted into the PDE, dividing then by K, results in the ODE, and also the 

value matching and smooth pasting conditions hold. Figure 1 B18 ODE is 

solved calculating the ROV  delta (15), and  gamma (16). 

   1 1

1'( ) ( )W Z KA Z
 

      (15) 

 

1 2

1 1"( ) ( 1)( )W Z KA Z
  

      (16) 

In Figure 1, the value matching conditions B21=B22, and the smooth pasting 

condition B23 holds. 

 

5.2 REVENUE & INVESTMENT COST UNCERTAINTY 

 

Assume that both the net revenue and investment costs follow a geometric Brownian 

motion: 

1R RdR Rdt Rdz              (17) 

where αR is the expected growth or drift of the revenue, σR the volatility of the revenue 

and investment cost, and the Wiener processes dz1 and dz2 can be correlated denoted 

by a parameter ρR,K. Viewing the R and K drift in a risk-neutral world implies that r-

R=δR , the asset or convenience yield, similarly for δK.  

 

Dixit and Pindyck (1994) Chapter 6, Section 5, adapt the McDonald and Siegel (1986) 

model to consider net revenue and investment cost uncertainty.2  If z=R/K the PDE 

can be reduced to an ODE, with the substitutions similar to those provided in Sick 

(1989). 

  

Using the transformation3 variable, the option to invest can be written as F(R, K)=K 

W(z) where W(z) is determined from the ordinary differential equation (ODE), where 

2 2 2 2R R R K       : 

                                                 
2 If there is no form of homogeneity, they point out the solution must solve free-boundary problems 

for elliptic partial differential equations, requiring numerical methods of some complexity. 
3 Assuming R and K are homogeneous of degree one, so F(tR, tK)=t F(R,K). 
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Subjecting equation (18) to the appropriate boundary conditions we obtain: 
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where β1 is given by: 
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Figure 3 
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                           American Perpetual Exchange Option
INPUT Stochastic R and K

R 4.00

K 100

R 0.20

k 0.20

R 0.04

k 0.04

 0.50

OUTPUT EQ

F(R,K)=W(z) 25.00 IF(B17<B16,B13*B4*B3*((B17/B7)^B14),B12) 21

R/R-K 0.00 B3/B7-B4

A 0.0625 (((B14-1)^(B14-1))*B4^-(B14-1))/((B7*(B14^B14))) 22

1 2.00 0.5-(B8-B7)/(B15^2)+SQRT(((B8-B7)/(B15^2)-0.5)^2 + (2*B8)/(B15^2)) 20

 0.20 SQRT(B5^2+B6^2-2*B9*B5*B6)

z* 0.08 (B14/(B14-1))*B7 19

z 0.04 B3/B4

ODE 0.00 0.5*(B15^2)*((B17/B7)^2)*B20+(B8-B7)*(B17/B7)*B19-B8*B11 18

W'(z) 50.00 B14*B13*B4*B3*((B17/B7)^(B14-1))

W''(z) 50.00 B14*(B14-1)*B13*B4*B3*((B17/B7)^(B14-2))

W(z*) 100.00 B13*B4*B3*((B16/B7)^B14)

W'(z*) 100.00 B14*B13*B4*B3*((B16/B7)^(B14-1))

W(z) 25.00 B13*B4*B3*((B17/B7)^B14) 23
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With the given yields, volatilities and correlation, the exchange ratio volatility is 20% 

and β1=2.00.  With the given parameter values, the option value is entirely due to 

uncertainty since R/R=K, there is nil intrinsic option value. 

Figure 4 

 

Note that while the thresholds and ROV are highly sensitive to R volatility and the 

correlation of R & K, the vegas are all positive. 

 

5.3 UNIT PROFIT & QUANTITY UNCERTAINTY 

 

Suppose that both the profit per unit and the number of units follow different but 

possibly correlated geometric Brownian motion processes. Let P represent the profit 

per unit sold and Q the quantity sold in a market by a firm. Assume that each variable 

follows a geometric Brownian motion of the form: 

1
dzPdtPdP                           (24) 

2
dzQQdtdQ                                                         (25) 

where μ and ω are the expected multiplicative trends of P and Q, σ and α are the 

volatilities, and dz1 and dz2 the increments of a Wiener process. The two variables 

may be correlated with correlation coefficient ρ.  
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Consider a portfolio that consists of a long position in the option to enter a given 

market, ),( QPH , and a short position consisting of 1  and 2  units of P and Q, 

respectively. Assume that firms are risk-neutral.4 Applying Ito’s lemma, the 

following PDE for a firm is obtained (where r=riskfree  rate): 

0),(
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

          (26)     

                                      

Equation (26) explains the movements in the value function of a firm with an 

investment opportunity and is subject to the usual boundary conditions. The first 

boundary condition is the value matching that gives the value of H(P,Q) at which 

the firm should invest. The second boundary condition is the smooth pasting that 

assures that the derivatives of the two functions (before and after the firm enters the 

market) are equal at the investment point. 

 

Let PQX   denote the total profit for the firm (no operating cost), implying that 

),()( QPHXP  . After the appropriate substitutions5, equation (26) can be re-

written as: 

    0)(
)(

2
)(

2

1 22

2

2

2  XrP
dX

XdP
X

dX

XPd
X       

                (27) 

Equation (27) is an ODE with the following characteristic quadratic function: 

0)()1()2(
2

1 22  r                   (28) 

Equation (28) has two roots, a positive and a negative one, given by: 

                                                 
4 The assumption of risk neutrality may be relaxed by adjusting the drifts of P and Q to account for 

a risk premium.  
5 See the Appendix for similarity methods. 
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where  2222 z . 

The solution of equation (27) is: 

21)(


BXAXXP                                                                        (30) 

 

We know that as X increases, the value function of the firm has to increase and that 

equation (30) has to be finite, thus B equals zero. Equation (30) is subject to the 

value-matching condition: 

K
r

X
XP 






*
*)(                                   (31) 

where *X is the firm’s trigger value, that is the value of X at which the firm should 

enter the market, and is also subject to the smooth-pasting condition: 

 


rdX

XdP 1*)(
                                         (32) 

Equations (30), (31) and (32) imply that: 
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Thus the value function of the firm, H(P,Q), is given by: 
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                   (34) 

Equation (34) describes the value function of the firm before and after the trigger is 

hit. Before the trigger X* is hit, the firm has not yet entered the market and its value 

function is a monopoly perpetual American option to invest. At the trigger, the firm 

invests and after that its value function is the net present value. 
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Figure 5 

 

 

Figure 5 parameters are chosen so that the real option results and optimal X* which 

justifies making the investment are similar to Figure 4.1 (times 100 for V and K). 

Note that r--ω=ν, so V=X/ν and V*=X*/ν.  With suitable drifts, volatilities and 

correlation parameters, the net profit volatility z=20% and β1=2.00.  So, the optimal 

V* equivalent is the same as in Figure 4.1, and the ROV=H(P,Q) is the same for the 

same level of investment cost and V equivalent. 

 

The first derivative (delta) of the value function of the firm, where the number of 

units and the profit per unit are the state variables, is: 
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American Multi-factor Perpetual Real Option
INPUT Stochastic P & Q    Paxson & Pinto 2005

P 1.00

Q 2.00

X 2.00

K 100.00

 0.20

 0.20

 -0.50

r 0.04

 0.01

 0.01

OUTPUT

 0.02 B10-B11-B12

H(P,Q) 25.00 IF(B5<B19,(B6/(B17-1))*((B5/B19)^B17),B16) 34

X/-K 0.00 B5/B14-B6

1 2.00 29

X 0.20 SQRT(B7^2+B8^2+2*B9*B7*B8)

X* 4.00 B6*B14*(B17/(B17-1)) 33

ODE 0.00 0.5*(B18^2)*((B5/B14)^2)*B22+(B9*B7*B8+B11+B12)*(B5/B14)*B21-B10*B15 27

H'(P,Q) 0.50 B23*B17*((B5/B14)^(B17-1)) 35

H''(P,Q) 0.01 B23*B17*(B17-1)*(B5/B14)^(B17-2)

A 0.0025 ((B19/B14)-B6)/((B19/B14)^B17)

ROV 25.00 B23*(B5/B14)^B17  
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Delta behaves as expected, that is as total profit increases the firm’s ROV also 

increases, until it reaches a constant 1/ν at X=X*. 

Figure 6 

 

 

Figure 6 shows the sensitivity of the ROV and the X threshold to changes in the 

correlations of P and Q.  

 

The primary difference between the American multi-factor perpetuity and the 

“vanilla” American perpetuity is the separate consideration of P and Q drifts, separate 

volatilities and correlation between P and Q.  Typically, economists model inverse 

demand curves, so that in normal markets Q= 1- θP.  As the price declines Q increases, 

or with fixed demand, as Q increases P decreases.  Thus P and Q are negatively 

correlated. 
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     Figure 7 

 

Figure 7 illustrates the sensitivity of both the ROV=H(P,Q) and X* to increases in 

price volatility, with negative correlation between P and Q, and low or nil P and Q 

drift. In this case both ROV and X* threshold vegas are negative as price volatility 

increases from a low level, and then eventually become positive at high price 

volatility. 

 

SUMMARY 

 

This chapter presents real perpetual American multi-factor option models. A firm  

maximises the value of its investment decision not when the present value of the cash 

flows equals the investment cost, but when V/K is much greater than one, unless there 

is little volatility in V and K, and V and K are highly correlated. The ROV and Z* are 

derived as the solution to an ordinary differential equation.  It is easy, especially in 

Excel, to show that the solution, along with the first and second derivatives of the 

ROV, do actually solve the differential equation.  Multi-factor models are able to 

cover estimations of several state variables, the volatilities of those variables, and 

correlations among the variables, if warranted. Replicating these real options along a 

time frame might be attempted using a variety of real, financial and commodity 

securities, or eventually synthetic or virtual products created by imaginative 

enterprises.  

ROV (P,Q) 11.71 8.93 7.74 7.76 8.57 9.85 11.39 13.05 14.75 16.44

X* 6.15 5.48 5.22 5.22 5.40 5.70 6.07 6.49 6.96 7.46
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EXERCISES 

 

EXERCISE 5.1  A bungalow in Putney has a restrictive covenant requiring the 

permission of the adjacent house owner in order to convert the bungalow into a 

modern house.  Provisionally, a house of 3,000 square feet is envisioned (depends on 

design), which currently would be worth £300 per square foot, and costs £273 per 

square foot to build, including demolition, design and other costs.  The volatility of 

Putney houses is 20%, interest rates 4% and expected payout 4%; construction costs 

are expected to have a 20% volatility and 4% payout, and are 50% correlated with 

Putney house prices.    What is the value of this bungalow site?  At what house value 

should the construction start?   

 

EXERCISE 5.2   Genzyme Corporation has a perpetual option to acquire 

Blockbuster Ltd. which is currently worth $300 million, in exchange for Genzyme 

Biosurgery, which is currently worth $300 million.  The volatility of Blockbuster is 

112%, Biosurgery 95%, the correlation between the companies is 0%, and both have 

a payout of 2%.  What is the value of this option, and at what Blockbuster value 

should it be exercised?   

 

EXERCISE 5.3   ROGroupie Co. has the opportunity to build a Real Options 

Network, which will have a revenue of Dedicated Subscribers each paying a DSP 

price.  It cost nothing to operate this network, but the investment cost per expected 

DS is 100.  Suppose the expected number of Dedicated Subscribers is 2, the DSP is 

1.00, the volatilities of both DS and DSP are 20% and the drifts 1%, the correlation 

is -50% and the interest rate is 4%. What is the value of this opportunity, and at what 

DS*DSP amount should those groupies start this venture?  
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PROBLEMS 

 

PROBLEM 5.4      A bungalow in Putney has a restrictive covenant requiring the 

permission of the adjacent house owner in order to convert the bungalow into a 

modern house.  Provisionally, a house of 3,000 square feet is envisioned (depends on 

design), which currently would be worth £300 per square foot, and costs £273 per 

square foot to build, including demolition, design and other costs.    The volatility of 

Putney houses is 30%, interest rates 5% and expected yield 3%; construction costs 

are expected to have a 20% volatility and 2% payout, and due to the influx of new EU 

workers are not correlated with Putney house prices.    What is the value of this 

bungalow site?  At what house value should the construction start?   

 

PROBLEM 5.5   Young Mandy Ma is offered a lifetime investment opportunity in 

a residential electricity solar facility which currently costs $25,000.  The quantity of 

electricity generated annually forever is around 20 units, which can be sold to the 

grid (or consumed) at a current average price of 50. V (P*Q/V) and K have a -.50 

correlation, both are expected to increase 2% per year and both are highly volatile 

at 20%.  What is the value of this opportunity, and at what electricity price should 

she exercise the option? 

     

PROBLEM 5.6    The State of Arizona wants to encourage more residential solar, 

and is considering a subsidy to reduce the investment cost in the previous problem. 

What is the cash subsidy that would justify immediate installation of Mandy’s 

facility? 

 

 


